Correlación de Pearson
Es una prueba estadística para analizar la relación entre dos variables medidas en un nivel por intervalos o de razón. Se le conoce también como “coeficiente producto-momento”. Se simboliza: r Hipótesis a probar: correlacional, del tipo de “a mayor X, mayor Y”, “a mayor X, menor Y”, “altos valores en X están asociados con altos valores en Y”, “altos valores en X se asocian con bajos valores de Y”. La hipótesis de investigación señala que la correlación es significativa. Variables: dos. La prueba en sí no considera a una como independiente y a otra como dependiente, ya que no evalúa la causalidad. La noción de causa-efecto (independiente-dependiente) es posible establecerla teóricamente, pero la prueba no asume dicha causalidad.
El coeficiente de correlación de Pearson se calcula a partir de las puntuaciones obtenidas en una muestra en dos variables. Se relacionan las puntuaciones recolectadas de una variable con las puntuaciones obtenidas de la otra, con los mismos participantes o casos (The SAGE Glossary of the Social and Behavioral Sciences, 2009g; Bagiella, 2007; Onwuegbuzie, Daniel y Leech, 2006a).
Nivel de medición de las variables: intervalos o razón. Interpretación: el coeficiente r de Pearson puede variar de −1.00 a +1.00, donde: −1.00 = correlación negativa perfecta. (“A mayor X, menor Y”, de manera proporcional. Es decir, cada vez que X aumenta una unidad, Y disminuye siempre una cantidad constante). Esto también se aplica “a menor X, mayor Y”. −0.90 = Correlación negativa muy fuerte. −0.75 = Correlación negativa considerable. −0.50 = Correlación negativa media. −0.25 = Correlación negativa débil. −0.10 = Correlación negativa muy débil. 0.00 = No existe correlación alguna entre las variables. +0.10 = Correlación positiva muy débil. +0.25 = Correlación positiva débil. +0.50 = Correlación positiva media. +0.75 = Correlación positiva considerable. +0.90 = Correlación positiva muy fuerte. +1.00 = Correlación positiva perfecta (“A mayor X, mayor Y” o “a menor X, menor Y”, de manera proporcional. Cada vez que X aumenta, Y aumenta siempre una cantidad constante). El signo indica la dirección de la correlación (positiva o negativa); y el valor numérico, la magnitud de la correlación. Los principales programas computacionales de análisis estadístico indican si el coeficiente es o no significativo de la siguiente manera: r = 0.7831 (valor del coeficiente) s o P = 0.001 (significancia) N = 625 (número de casos correlacionados) Si s o P es menor del valor 0.05, se dice que el coeficiente es significativo en el nivel de 0.05 (95% de confianza en que la correlación sea verdadera y 5% de probabilidad de error). Si es menor a 0.01, el coeficiente es significativo al nivel de 0.01 (99% de confianza de que la correlación sea verdadera y 1% de probabilidad de error).
Una correlación de Pearson puede ser significativa, pero si es menor a 0.30 resulta débil, aunque de cualquier manera ayuda a explicar el vínculo entre las variables. Si queremos asociar la presión arterial y el peso de un grupo de pacientes, la solubilidad del gas con la temperatura (en ingeniería petrolera) y la inversión en publicidad y las ventas, es útil este coeficiente.
No hay comentarios.:
Publicar un comentario